Do aerodynamics engineers now have more influence on the development of electric cars?
Yes, I think they do, absolutely. And that’s because aerodynamics play a crucial role in determining the range of an electric car. After all, the energy used to overcome air resistance cannot be recovered – unlike with vehicle acceleration.
In town, a heavy electric car is also efficient because it can recover a large part of the energy, which it uses to accelerate, when running up to the next red traffic light. The situation is, however, totally different on long journeys where the Audi e-tron prototype is perfectly at home: Here from speeds of around 70 km/h (43.5 mph) the rolling resistance and the inertia take second place to aerodynamic drag irrespective of the type of car.
The energy required to overcome that drag is lost. That’s why clever aerodynamics measures are so important for the Audi e-tron prototype for ensuring high efficiency and thus a reach suitable for long-haul routes.
Which areas of an electric vehicle offer more design and development freedom compared to a conventional vehicle?
Thanks to their large battery, electric vehicles have an enclosed and very smooth underfloor. This is the dream of every aerodynamics engineer and a huge advantage for us in development. We could have just left it at that. But we didn’t. On the contrary: We’ve done all we can to make the shape of the body as streamlined as possible. And we’ve also incorporated a new feature. The Audi e-tron prototype is the first Audi production model with an enclosed air flow which is guided through the entire front end and back out through the underfloor. No combustion-engined model has that yet.